Clumping effects on non-thermal particle spectra in massive star systems
نویسنده
چکیده
Observational evidence exists that winds of massive stars are clumped. Many massive star systems are known as non-thermal particle production sites, as indicated by their synchrotron emission in the radio band. As a consequence they are also considered as candidate sites for non-thermal high-energy photon production up to gamma-ray energies. The present work considers the effects of wind clumpiness expected on the emitting relativistic particle spectrum in colliding wind systems, built up from the pool of thermal wind particles through diffusive particle acceleration, and taking into account inverse Compton and synchrotron losses. In comparison to a homogeneous wind, a clumpy wind causes flux variations of the emitting particle spectrum when the clump enters the wind collision region. It is found that the spectral features associated with this variability moves temporally from low to high energy bands with the time shift between any two spectral bands being dependent on clump size, filling factor, and the energy-dependence of particle energy gains and losses.
منابع مشابه
Non-thermal high-energy emission from colliding winds of massive stars
Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating lepton...
متن کاملParticle Acceleration in the Colliding Winds Binary Wr 140
RESUMEN Favor de proporcionar un resumen en español. If you cannot provide a spanish abstract, the editors will do this. Massive WR+O star systems produce high-temperature, shock-heated plasma where the wind of the WR star and that of its binary companion collide-the wind-collision region (WCR). The WCR is a source of thermal (e.g. hard X-rays) and non-thermal (e.g. synchrotron) emission, the l...
متن کاملRadio observations of colliding winds in massive stars
This brief review describes radio observations of colliding winds in massive stars starting with the first direct observational support for the colliding-wind model advanced in the early 1990’s to explain non-thermal radio and thermal X-ray emission in some massive stars. Studies of the well-studied and highly-eccentric WR+O star systemWR140 are described along with recent observations of O-sta...
متن کاملParticle Clumping and Planetesimal Formation Depend Strongly on Metallicity
We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the midplane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebbleto-gas column density ratio is 0.01, corresponding roughly to solar metallicity,...
متن کاملParticle Clumping in Protoplanetary Disks Depends Strongly on Metallicity
We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the midplane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebbleto-gas column density ratio is 0.01, corresponding roughly to solar metallicity,...
متن کامل